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Abstract

Radiation damage in lead tungstate crystals reduces their transparency. The cali-
bration that relates the amount of light detected in such crystals to incident energy
of photons or electrons is of paramount importance to maintaining the energy
resolution the detection system. We report on tests of lead tungstate crystals, read
out by photomultiplier tubes, exposed to irradiation by monoenergetic electron or
pion beams. The beam electrons themselves were used to measure the scintillation
light output, and a blue light emitting diode (LED) was used to track variations of
crystals transparency. We report on the correlation of the LED measurement with
radiation damage by the beams and also show that it can accurately monitor the
crystals recovery from such damage.
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1 Introduction

Electromagnetic calorimeters built of the lead tungstate (PbWO4, PWO) scintillating
crystals will be used in several high energy physics experiments, such as ALICE and
CMS at the CERN LHC [1,2,3]. This work was done for studies of the electromagnetic
calorimeter for BTeV at the FNAL Tevatron Collider [4]. Unfortunately, BTeV was
terminated by the U.S. Dept. of Energy.

Over the last several years, the PWO crystals have been extensively studied at the
Institute for High Energy Physics (IHEP) in Protvino, Russia [5,6,7,8,9,10]. In particular,
the studies confirmed that the PWO light output degrades under irradiation by high-
energy electron or pion beam of high intensity. The light loss has a tendency to exhibit
saturation when the dose rate is kept at a constant level. On the other hand, the light
output changes whenever the radiation rate changes. Thus, they have to be monitored
continuously during operation to maintain excellent energy and space resolutions of the
calorimeter.

Monte-Carlo study indicates that there would be enough electrons and positrons from
photon conversion near the interaction region and semileptonic B decays to calibrate the
detector in-situ. The rates of collecting electrons/positrons for the calibration vary in
different areas of the calorimeter, ranging from less than 1 hour to about several hours of
data taking to achieve the calibration accuracy of (0.2−0.3)%. Any changes in the crystal
light output over this time scale must be monitored using the transparency measurements.
On the other hand, the transparency monitoring does not have to be stable over much
longer time scale like a month since the electron calibration takes care of that part.

We presume that the PWO light output degradation is caused by the changes in the
transparency since no evidence of the scintillating mechanism damage has been found so
far [11]. Thus, a highly stable reference light pulser sending light through the crystal can
be used to measure the transparency changes and predict the scintillation light output
changes from the PWO crystals.

When the coefficient of light absorption changes by ∆α, the light transmission changes
by a factor of e−∆αλ, where λ is the path length that light must travel from the source to
the light detector. It is expected that ∆αλ < 0.1 for several hours of data taking, and it
is relevant to use a linear approximation. Therefore the fractional loss is given by ∆αλ.
Considering that the path lengths for scintillation and monitoring light are different, the
fractional losses for the two processes will be different, but are expected to be proportional.

The dose rate profiles induced by electron and pion beams are significantly different
longitudinaly [8]. This could potentially lead to different proportionality constants for
electron or pion irradiation. Our studies addressed those issues for different crystals and
under different conditions. A dedicated test beam run took place at the IHEP-Protvino
test beam facility [6] in November-December 2002.
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Irradiation of PWO crystals has been done using high-intensity 34 GeV pion beam and
23 GeV electron beam. Following the run, the crystals were left for a long-term natural
recovery for over a 3-months period. Their light transmittance changes were measured
with the LED monitoring system [9]. Results are presented in this paper.

2 Test beam apparatus and irradiation procedure

The IHEP-Protvino test beam facility is described in details in [7]. The major components
are momentum tagging system and a prototype of the PWO crystal calorimeter. The
prototype is a 5×5 matrix of crystals from two vendors, Bogoroditsk and Shanghai, and
is installed in a thermo-stabilized light-tight box on a moving platform. All the crystals
are rectangular in shape, with a 27×27 mm2 cross-section and a 220 mm length. They
were instrumented with 6-stage R5380Q Hamamatsu photomultiplier tubes (PMT).

Before irradiation, scintillation light output of the crystals was measured with the use of
a low intensity electron beam. All results presented in this paper are normalized to the
results of this very first calibration.

All crystals received from 500 rad to 1.5 krad of integral dose over the entire studies.
During the electron irradiation runs, position of the electron peak itself was used to
monitor the light output continuously. During the irradiation by pions, data taking runs
alternated with calibration runs by low intensity electron beam, to monitor changes in the
crystals light output. For the pulse height analysis, only electrons that hit the central part
(2×2 mm2) of the crystal’s front face were selected using the data from drift chambers.

Light transmittance change in the crystals was measured continuously with the use of a
blue (470 nm) LED. Optical fibers guided light from the LED to the front side (opposite
from the end where the PMT was attached) of the crystals. The typical path length of
LED light in the crystal approximately equals the length of the crystal. The light comes
out of the optical fiber with a characteristic full angle spread of 25◦; this angle is reduced
to 11◦ as the light enters the crystal from air. Thus, the path length of the light in a
crystal should be increased by 1/ cos 11◦, i.e. order of 2%. As for the scintillation light
from incident particles, taking into account that this light is emitted isotropically and
the crystal is wrapped with Tyvek (diffuse reflecting material), its average path length to
the photocathode is longer due to the multiple reflections. In addition, the LED system
monitors the transparency of the crystal at a specific wavelength (in our case, 470 nm
was chosen partially due to the availability of blue LEDs) and thus does not sample the
entire spectrum of scintillation light. The radiation damage effect is less severe at 470 nm
than at 430 nm, which is the center of the PWO scintillation emission peak. From these
considerations, we expect that the ratio, K, of the light loss factors for the LED signal
and the particle signal should be less than 1.
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Fig. 1. Blue LED vs. scintillation signal relative changes under pion irradiation for Shanghai T9
crystal. Points representing the data of the calibration runs are fitted to a straight line. The
slope, K = 0.59, was obtained with an accuracy of ±5%.

3 Experimental results

3.1 Data from calibration runs

The mean pulse heights of the scintillation signal and of the LED signal were obtained
using the data from the calibration runs and normalized to the results of the very first
calibration. Fig. 1 shows an example of the correlation between the relative changes
of the LED signal vs. relative changes of the scintillation signal. Points 1–4 represent
measurements taken during the pion irradiation period; they fit very well to a linear
function. Points 5–6 were taken when the crystal started to recover. By this we mean that
the high intensity pion beam moved away from this crystal and onto other crystals, thus
the dose rate on the spot decreased significantly and the light output started to restore,
as was measured in the subsequent calibration runs. It has to be noted that points 5–6
agree very well with the same linear fit applied to the data taken during the irradiation
period. The fit function is shown below:

1 − y = K(1 − x) , (1)

where x and y are relative electron and LED signals, respectively. For this particular
crystal, the proportionality coefficient was obtained to be K = 0.59 with an accuracy
of ±5%.

The same calculations were applied for all the crystals that have been irradiated either
by electrons or pions. Distributions of the coefficients obtained from a linear fit of the
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Fig. 2. Linear fit coefficients between the blue LED and electron signals as a result of (a) pion
irradiation; (b) electron irradiation.

LED vs. electron dependencies for each crystal are presented in Fig. 2 for (a) pion and (b)
electron irradiation. The mean values of the two distributions are the same within errors.

3.2 Continuous electron calibration

All electrons incident within 3×3 array of the crystals and satisfying the condition, that
the energy deposit over 9 crystals in this array was within ±10% of the beam energy, were
selected for this analysis. The electron irradiation data were subdivided into smaller data
sets, each set corresponded to 15 min of data taking. The mean signals for the 9 crystals
in the array were calculated for each of the subsets. A standard inverse matrix iteration
procedure of crystal calibration required not more than 6 iterations.

Fig. 3(a) shows the electron signal and the blue LED signal vs. time for one of the
crystals during the electron irradiation period when the average dose rate was 20 rad/h;
both signals have been normalized to the light output measured at the beginning of
the irradiation period. Fig. 3(b) shows the correlation between relative electron signal
and relative blue LED signal. The linear fit coefficient K = 0.596 is computed with
much better accuracy of ±0.3% than in the case of discrete calibration runs in the pion
irradiation data.

Fig. 4 demonstrates how accurate the energy correction can be in a single crystal with
the use of a stable light calibration source if the coefficient K in formula 1 is known. The
results presented here were obtained over 35 hours of data taking. While the response
changed over each 15-minutes period, the effect was corrected according to the change
in the LED signal and with the knowledge of the linear fit coefficient that is shown in
Fig. 3(a). The corrected energy distribution fitted by Gaussian has σ equal to 0.2%.
Fig. 4(b) shows the distribution of Gaussian σ computed for 19 crystals with mean at
0.25% and r.m.s. about 0.07%.
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Fig. 3. (a)The dependence of electron and blue LED normalized signals on time and (b)their
correlation for Shanghai T9 crystal during the electron irradiation period.
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Fig. 4. (a) Distribution of the electron signals corrected for the LED signals over 35 hours of
continuous crystal irradiation fitted by Gaussian (σ=0.2%). (b) Distribution of Gaussian sigma
values for 19 crystals.

4 Long time crystals recovery

We observed that the transparency of the crystals recovered upwards to its level before
irradiation. Light output from the crystals was constantly monitored with the blue LED
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Fig. 5. Dependence of the blue LED signal on time over 2200 hours of natural crystal’s recovery.
The parameters a,b and c are as follows : a=0.855±0.005, b=0.097±0.06, c=0.048±0.016.

during for more than 3 months. Fig. 5 shows typical recovery process for one of the
crystals. This crystal was irradiated with the dose rates which varied from 15 to 30 rad/h
and accumulated 2.2 krad absorbed dose.

The experimental results were fitted with function:

f(t) = a + b × (1 − e−t/τ1) + c × (1 − e−t/τ2). (2)

Besides continuous monitoring of the changes in the crystals light transmittance with the
LED, at the end of the recovery period of more than 2200 hours, a calibration run with a
low intensity electron beam was taken. The results of the calibration run were compared
to those from the crystals calibration at the end of the irradiation run. Fig. 6 shows that
on average the light output from the crystals degraded to 86% of its initial level at the
end of the irradiation run but naturally recovered up to 98%.

5 Conclusions

The goal of this study was to confirm that the electromagnetic calorimeter made of lead
tungstate crystals read out by photomultiplier tubes can be continuously calibrated to
the required accuracy with the use of LED-based monitoring system within a period of 1
day or shorter.

We studied crystals behaviour under electron or hadron irradiation and whether the
changes in their responses to electrons would scale well with their response to the blue
LED.

We found that the relative changes of the LED and electron signals can be approximated
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Fig. 6. (a) after irradiation; (b) after the 2200 hours recovery.

by a linear function in both the electron and pion irradiation studies. The obtained linear
fit coefficients are consistent with each other. This strongly suggests that in the real
experimental environment, where the crystals will be irradiated by a mixture of hadrons,
gammas and electrons, linear fit will be sufficient for the calorimeter’s calibration.

When the electron data were corrected for the transmission loss, which is due to irradi-
ation, using the LED data, the corrected energy measurements are constant to within
±0.25%. This satisfies one of the most important technical requirements of modern
experiments.

Over the 3-months long recovery period that followed the irradiation run we found that
the light output of the crystals restored from an average of 86% to 98%. It was also found
that, for a given crystal, correlations between electron signal and blue LED signal are
linear and are the same if measured during irradiation or during the recovery period.
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